Imagine that pesky tabby cat has been pooing in your backyard again.
Unbeknown to you, it has transferred some of the parasite spores it was
carrying onto your herb garden.
Unintentionally, while preparing a tasty
salad, you forget to wash your hands and infect yourself with the Toxoplasma gondii
spores. For months you display no symptoms, then after six months you
are driving your car more aggressively, taking chances in road junctions
and generally filled with more road rage as you angrily gesticulate
with fellow drivers. Could all this be linked to that tasty salad?
T. gondii is a fascinating protozoan parasite
which, like many similar organisms, needs to move between several
different host species in order to fully develop and reproduce. As such,
it appears to have evolved clever methods to make transmission between
hosts more likely. For example, studies have found that once rats –
intermediate hosts – are infected they display less caution towards cats – the final stage hosts – and so the parasite is more likely to be passed on.
An increasing number of studies suggest humans known to be infected with these parasites could be more susceptible to schizophrenia, bipolar disorder, aggression and even increased suicide. Studies have even suggested you are two to three times more likely to have a car crash if your blood tests positive for the parasite. This is particularly striking when it has been predicted that 30%-50% of the worldwide population may carry the parasite.

Not so cute when you know what they’re carrying. Shutterstock
Chicken or egg?
Very often criticisms of these studies come down to a chicken and egg
question. Correlation doesn’t necessary mean causality. Are those
aggressive, fast-driving people or those with behavioural conditions
more likely to catch the parasites, or does the parasite cause these
behavioural traits? Many of the studies were done retrospectively rather
than looking at someone’s behaviour before and after they became infected with the parasites. So for now, we can’t say for sure whether your road rage really was linked to your salad.
What we do know is that there are plenty of examples in wildlife
where parasites can manipulate the sex, growth, maturation, habitat and
behaviour of their hosts. Hair worms, for instance, complete their
lifecycle in a river or stream and appear to make their hosts – crickets
– attracted to water.
The
effects of the parasite don’t stop there, either. The hapless crickets
can provide fish with an alternative food source to their usual diet of
aquatic invertebrates and, for parts of the year, can form a substantial
part of their diet. So manipulating parasites can be important to
maintaining healthy ecosystems.
Some ant species
infected by trematode flukes are manipulated in a way that makes them
cling to the tops of blades of grass, which means they’re more likely to
be eaten by sheep. This enables the fluke to complete its life cycle in
the sheep.

Chestburster. mardeltaxa/Flickr, CC BY-NC-SA
A type of barnacle parasite known as a rhizocephalan, which eats its
crab host from the inside out, is known to feminise its male hosts by castrating them.
Scientists have suggested they are then more likely to look after the
parasite sac that bursts through their abdomens, much like a female
would tend to her eggs.
Switching on genes
Through advances in molecular biology, we are increasingly working out how these parasites can change behaviour by altering gene expression – the way genes can be turned on or off. For example, work in our labs
at the University of Portsmouth is trying to uncover the mechanism that
enables a newly discovered species of trematode parasite make their
shrimp-like (amphipods) hosts more attracted to the light.

Trematodes: little blighters. Josef Reischig/Wikimedia Commons, CC BY-SA
These amphipods would prefer to be hiding under seaweed on our
shores, escaping their bird predators as the tide recedes. By chemically
mapping the brains of infected shrimp, scientists have discovered that
parasites somehow altered the shrimps' serotonin, a mood
neurotransmitter found throughout the animal kingdom. Our recent studies
have indicated that infected shrimp have subtle alterations to their
serotonin receptors and the enzymes that produce serotonin.
Other studies have shown amphipods hosting similar parasites are over 20 times
more likely to be eaten compared to non-infected specimens. Again, this
highlights the often-overlooked importance of brain-bending parasites
in the natural order of food webs.
We often think we must have discovered all the species possible in
well-studied locations such as the UK, but many fascinating new
manipulating parasites are yet to be discovered on our doorsteps. Our
knowledge of how these brain-bending parasites interact with human
species will no doubt develop more strongly over the next decade.

No comments:
Post a Comment